# 第七章 假设检验

- 1 假设检验的基本概念
  - 2 单个正态总体参数的假设检验
  - 3 两个正态总体参数的假设检验
  - 4 非正态总体参数的假设检验
- 5 总体分布的假设检验
- 6 本章小结









7.1 假设检验的基本概念

(一) 统计假设

(二) 假设检验

(三) 两类错误

(四) 否定域与检验统计量

(五) 假设检验的基本思想

(六) 假设检验的一般步骤







# (<del>-</del>)

### 统计假设

我们把关于总体(分布、特征、相互关系等)的论断 称为统计假设, 记作 H. 例如:

- (1)对某一总体 X 的分布提出某种假设, 如 H: X 服从正态分布, 或 H: X 服从二项分布, 等等;
- (2) 对于总体 X 的分布参数提出某种假设, 如 H:  $\mu = \mu_0$ , 或 H:  $\mu \leq \mu_0$ , 或 H:  $\sigma^2 = \frac{2}{0}$ , 或 H:  $\sigma^2 \leq \frac{2}{0}$ , 等等(其中  $\mu_0$ ,  $\frac{2}{0}$ 是已知数,  $\mu$ ,  $\sigma^2$ 是未知参数);
- (3)对于两个总体 X 与 Y 提出某种假设, H: X, Y 具有相同的分布, H: X, Y 相互独立, 等等.





### 统计假设

统计假设一般可以分成参数假设与非参数假设两种.

参数假设是指在总体分布类型已知的情况下,关于未知 参数的各种统计假设;

非参数假设是指在总体分类类型不确知或完全未知的情况下,关于它的各种统计假设.







### 统计假设

关于总体的假设通常是提出两个相互对立的假设, 把需要检验是否为真的假设称为原始假设或零假设,用 H<sub>0</sub>表示,而把与之对立的另一个假设称为备择假设或对 立假设,用 H<sub>1</sub>表示.

如零假设  $H_0$ :  $\mu = 100$ , 其备择假设  $H_1$ :  $\mu \neq 100$ ;

零假设  $H_0$ : X 服从  $N(\mu, \sigma^2)$ , 其备择假设  $H_1$ : X 不服从  $N(\mu, \sigma^2)$ 等.



### 1 参数检验与非参数检验

把检验参数假设的问题称为参数检验;而把检验非参数(如分布)假设的问题, 称为非参数检验(或分布检验).

说明: (1) 不论在哪种统计检验中, 所谓对 H。进行检验, 就是建立一个准则来考核样本, 若样本值满足该准则就接受 H。, 否则就拒绝 H。. 我们称这种准则为<mark>检验准则</mark>, 或简称为检验.

(2) 一个检验准则本质上就是将样本可能取值的集合 D(统称为样本空间)划分成两个部分 V 与□,



### 2. 拒绝域(否定域)与接受域

当样本值  $(x_1, x_2, \dots, x_n) \in V$  时, 认为假设  $H_0$  不成立, 从而否定  $H_0$  (此时, 若  $H_1$  存在则判其成立, 即接受  $H_1$ ); 相反, 当  $(x_1, x_2, \dots, x_n) \notin V$ , 即  $(x_1, x_2, \dots, x_n) \in \Box$ 时, 认为  $H_0$  成立, 从而接受  $H_0$  (此时否定  $H_1$ ). 通常我们称 V 为  $H_0$  的否定域,  $\Box$  为  $H_0$  的接受域.





# (三)

### 两类错误

样本本身是具有随机性的,通过样本进行判断时,可能犯以下两类错误:

(1) 当  $H_0$  为真时, 样本值却落入了  $V_1$   $H_0$  成立判为  $H_0$  不成立 (即否定了真实的假设), 称这种错误为"以真当假"的错误或第一类错误, 记 $\alpha$  为犯此类错误的概率,

□{否定□ $_0$ |□ $_0$ 为真} =  $\alpha$ ;

(2) 当 H<sub>1</sub>为真时, 而样本值却落入了□, H<sub>0</sub>不成立判为 H<sub>0</sub>成立(即接受了不真实的假设), 称这种错误为"以假当真的错误或第二类错误, 记β为犯此类错误的概率,

□{接受  $\square_0$  |  $\square_1$  为真} =  $\beta$ .









### 两类错误

在样本容量一定的情况下,给出允许犯第一类错误的一个上界 α,对于固定的 n 和 α,我们选择检验准则,使得在犯第一类错 误的概率 $\alpha$ 不大于 $\alpha$ 的情况下,第二类错误出现的概率 $\beta$ 最小. 我们称这种检验准则为最优检验准则. 对犯第一类错误的概率 α加以限制, 而不考虑犯第二类错误的概率. 在这种情况下. 确 定否定域 V 时只涉及零假设 Ho, 而不涉及对立假设 Ho. 这种统计 假设检验问题称为显著性检验问题. 显著性检验中。 允许犯第一类错误的上界 a 称为显著性水平或检验水平





## 四) 否定域与检验统计量

否定域可以通过某个检验统计量  $K=K(x_1, x_2, \dots, x_n)$ 来描述, 即 否定域 V 可表示为  $V=\{(\Box_1, \Box_2, \dots, \Box_n) | K(\Box_1, \Box_2, \dots, \Box_n) \in \Box_n\}$ ,

即  $(x_1, x_2, \dots, x_n) \in V$  与  $K(x_1, x_2, \dots, x_n) \in R_{\alpha}$  是等价的.

$$\square \{ \square \in \square_{\square} \mid \square_{0} 为 真 \} = P \{ (\square_{1}, \square_{2}, \cdots, \square_{n}) \in V \mid \square_{0} 为 真 \} = \overset{\sim}{\alpha},$$

$$\square\{\square\in R_{\square}|\square_1 \text{ 为真}\} = P\{(\square_1, \square_2, \cdots, \square_n)\in \overline{\square}|\square_1 \text{ 为真}\} = \beta.$$

根据样本值来计算统计量 K 的值 [], 做出等价的判断:

### 否定域与检验统计量

### 否定域 R。常以下面三种形式给出:

我们把否定域为上述形式的检验称为双侧检验;

$$(2) \square_{\square} = \{x \mid \lambda < x < +\infty\},$$

我们把否定域为上述形式的检验称为右侧检验;

$$(3) \square_{\square} = \{x \mid -\infty < x < \lambda\},$$

我们把否定域为上述形式的检验称为左侧检验.

注: 左、右侧检验统称为单侧检验.

### 假设检验的基本思想

假设检验问题是统计推断的另一类重要问题.

通常借助于直观分析和理论分析相结合的做法,其基本原理就是人们在实际问题中经常采用的所谓实际推断原理: "一个小概率事件在一次试验中几乎是不可能发生的".

把"小概率事件在一次试验中发生了"看成是不合理的现象.

小概率事件就是事件  $\{K \in R_{\alpha}\}$ , 其概率就是检验水平  $\alpha$ , 通常我们取  $\alpha$  =0. 05, 有时也取0. 01或0. 10.





# (六)

### 假设检验的一般步骤

### 单、双正态总体参数假设检验的一般步骤规定如下:

- (1)提出假设. 根据实际问题提出零假设 H<sub>0</sub>与备择假设 H<sub>1</sub>, 即说明所要检验的假设的具体内容.
- (2)选择统计量. 在零假设 H<sub>0</sub>为真的条件下, 该统计量的精确分布(小样本情况)或极限分布(大样本情况)已知.
- (3) 由检验水平  $\alpha$  , 找出临界值. 根据显著性水平  $\alpha$  与统计量的分布查表, 确定对应于此  $\alpha$  的临界值.
- (4) 做出判断. 根据样本观测值计算统计量的值, 并与临界值比较, 从而做出接受或拒绝零假设 H。的结论.









7.2 单个正态总体参数的假设检验

- (一) 单个正态总体均值的假设检验
- (二) 单个正态总体方差的假设检验







设总体  $X^{\sim}N(\mu, \sigma^2)$ , 从总体 X 中抽取一个容量为 n 的样本  $X_1, X_2, \dots, X_n$ , 样本均值和样本方差分别为

$$\overset{-}{X} = \frac{1}{-1} \sum_{i=1}^{n} \square_{i}$$

$$\overset{-}{\square} = \frac{1}{-1} \sum_{i=1}^{n} (\square_{i} - \overset{-}{X})^{2}.$$

# (一) 单个正态总体均值的假设检验

#### 1. 总体方差 σ²已知时, 总体均值 μ 的假设检验

#### (1) 双侧检验:

提出零假设  $H_0: \mu = \mu_0$ , 备择假设  $H_1: \mu \neq \mu_0$ .

选择统计量 
$$U = \frac{X - \mu_0}{\sigma / \mu_0}$$
.

当 H。成立时,

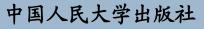
$$\stackrel{-}{\mathbf{X}}$$
N  $\square \square_0$ ,  $\frac{\square^2}{\square}$  $\square$ ,  $\mathbb{U}$ ^N(0, 1).

对于给定的显著性水平  $\alpha$  , 查标准正态分布表(附表 2) 得临界值  $u_{\alpha/2}$ , 有  $P(|U|>u_{\alpha/2})=\alpha$  (见图 7—1). 由样本值计算统计量 U.

当 | U | >u α /2 时, 小概率事件发生, 拒绝零假设 H₀; 当 | U | ≤u α /2 时, 接受零假设 H₀. 这种检验法称为 U 检验法.

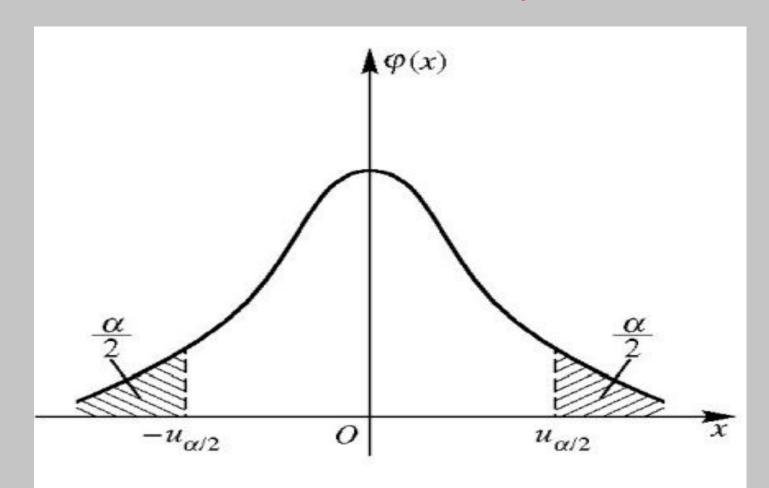








1. 总体方差σ²已知时, 总体均值μ的假设检验











### 1. 总体方差 σ²已知时, 总体均值 μ 的假设检验

例 1 已知滚珠直径服从正态分布. 现随机地从一批滚珠中抽取 6 个, 测得其直径为 14. 70, 15. 21, 14. 90, 14. 91, 15. 32, 15. 32 (mm). 假设滚珠直径总体分布的方差为 0. 05, 问这一批滚珠的平均直径是否为 15. 25mm (α =0. 05)?

解 用 X 表示滚珠的直径, 已知  $X^{n}(\mu, \sigma^{2})$ , 其中  $\sigma^{2}=0$ . 05. 这是一个已知方差, 检验均值的问题.

首先提出零假设,写出基本假设  $H_0$ 的具体内容.这里我们要检验这批滚珠平均直径是否为 15.25,即  $H_0$ :  $\mu$  = 15.25.









#### 1. 总体方差 σ²已知时, 总体均值 μ 的假设检验

然后选择一个统计量,即找一个(包括指定数值的)统计量,使得它在H。成立的条件下与一个(包括总体的待检验参数的)样本函数有关.这里我们选前面所给出(包括指定数值 15. 25)的 U 统计量,

$$\Box = \frac{X-15.25}{\Box_0/\overline{\Box_0}}.$$

在 H。成立的条件下, U 与(包括总体的待检参数 µ 的 样本函数

$$\Box = \frac{X - \mu}{\Box_0 / \Box_0}$$

都服从标准正态分布







# (<del>-</del>)

### 单个正态总体均值的假设检验

### 1. 总体方差 σ²已知时, 总体均值 μ 的假设检验

再由检验水平 α =0.05, 选择区域

$$\square_{\square} = \{(-\infty, \square_{1}) \cup (\square_{2}, + \infty)\},$$

使得

$$\square\{\square\in(-\infty,\square_1)\}=P\{u\in(\square_2,+\infty)\}=\frac{\square}{2},$$

即 
$$P\{u \in \square_{\sqcap}\} = \alpha$$
,

可见这里 {u∈Rα} 是一个小概率事件.

由于标准正态分布的对称性可知  $\lambda_2 = -\lambda_1 \triangleq \lambda_1$  考虑

到正态分布数值表的构造(前面已介绍),令

$$\Box (\Box) = 1 - \frac{\Box}{2},$$







### 1. 总体方差 σ²已知时, 总体均值 μ 的假设检验

可以找出临界值  $\lambda$ :这里的  $\alpha$  =0. 05, 根据  $\Phi$  ( $\lambda$ )=1- $\frac{0.05}{2}$ =0. 975, 查标准正态分布表(见附表 2)得到  $\lambda$  =1. 96, 故否定域

$$\Box_{\Box} = \{ (-\infty, -1.96) \cup (1.96, + \infty) \}.$$

最后由样本计算统计量 U 之值 □, 这里

$$\bar{x} = 15.06, \quad \hat{\Box} = \frac{15.06 - 15.25}{\sqrt{9.05} / \sqrt{6}} \approx -2.08.$$

于是我们可以做出判断: 若□∈Rඛ,则否定 H₀,否则 认为 H₀相容.

# (<del>一</del>)

### 单个正态总体均值的假设检验

1. 总体方差 σ²已知时, 总体均值 μ 的假设检验 (2) 右侧检验:

提出零假设 H₀: μ ≤ μ ₀, 备择假设 H₁: μ > μ ₀.

选择样本函数 
$$\square = \frac{X-\mu}{\square/\sqrt{\square}} N(0, 1),$$

对于给定的显著性水平  $\alpha$ , 查标准正态分布表 (附表 2) 得临界值  $u_\alpha$ , 使得

$$\square(\square>\square)=\alpha,$$

如图 7-2 所示. 在零假设 H。成立时,有

$$\Box = \frac{X - \Box_0}{\Box / \Box \overline{\overline{\Box}}} \leq \frac{X - \mu}{\Box / \Box \overline{\overline{\Box}}} = u,$$

从而

$$\square(\square > \square_{\square}) \leq P(u > \square_{\square}) = \alpha,$$

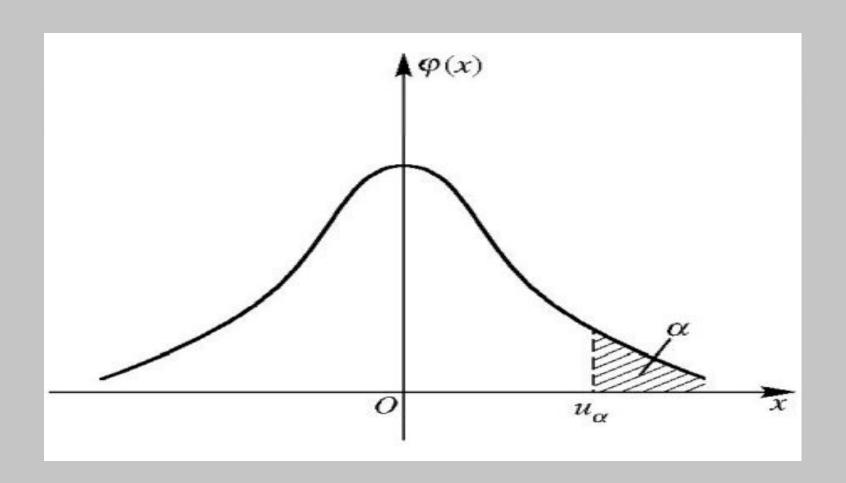
即  $P(U>u_{\alpha}) \leq \alpha$ .



















### 1. 总体方差 σ²已知时, 总体均值 μ 的假设检验

### (3)左侧检验:

提出零假设Ho:μ≥μ₀,备择假设H1:K μ₀(μ₀已知).

类似右侧检验的分析,当统计量U<¬u。时,拒绝零假

设 H 0;当 U ≥u a时,不能拒绝零假设 H 0.









2. 总体方差 σ²未知时, 总体均值 μ 的假设检验 总体方差 σ²未知, 可用样本的方差 S²代替, 这时检 验统计量

$$\Box = \frac{X - \Box_0}{\overline{\Box}}^* t (n-1).$$

利用T统计量进行假设检验的方法称为t检







验法.



2. 总体方差 σ²未知时, 总体均值 μ 的假设检验 (1) 双侧检验:

提出零假设  $H_0$ :  $\mu = \mu_0$ , 备择假设  $H_1$ :  $\mu \neq \mu_0$ . 给定显著性水平  $\alpha$  , 查 t 分布表(附表 4)得临界值  $t_{\alpha/2}(n-1)$ , 有

 $P(|T|>t_{\alpha/2}(n-1))=\alpha.$ 

由样本计算统计量  $T_1$  当  $|T| > t_{\alpha/2} (n-1)$  时, 拒绝零假设  $H_0$ : 否则不能拒绝零假设  $H_0$ .









2. 总体方差 σ²未知时, 总体均值 μ 的假设检验 (1) 双侧检验:

提出零假设  $H_0$ :  $\mu = \mu_0$ , 备择假设  $H_1$ :  $\mu \neq \mu_0$ . 给定显著性水平  $\alpha$  , 查 t 分布表(附表 4)得临界值  $t_{\alpha/2}(n-1)$ , 有

 $P(|T|>t_{\alpha/2}(n-1))=\alpha.$ 

由样本计算统计量  $T_1$  当  $|T| > t_{\alpha/2} (n-1)$  时, 拒绝零假设  $H_0$ : 否则不能拒绝零假设  $H_0$ .









## 2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

例 3 用某仪器间接测量温度, 重复五次, 所得数据是 1250°C, 1265°C, 1245°C, 1260°C, 1275°C, 而用别的精确办法测得温度为 1277°C(可看作温度的真值), 试问用此仪器间接测量温度有无系统偏差( $\alpha$  =0.05)? 解用 X表示由这个仪器测得的数值, 有  $X^{\sim}N(\mu, \sigma^2)$ , 其中  $\sigma^2$ 未知, 这是一个未知方差, 检验均值问题.

提出零假设  $H_0: \mu = 1277; 对于这类问题, 我们选取一个包括比京教徒 <math>1077$  的统计量

个包括指定数值 1277 的统计量

$$\Box = \frac{\overline{X} - 1277}{\overline{\Box} / \overline{\Box}}$$









# (一)

### 单个正态总体均值的假设检验

2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

其中  $S=\Box \frac{1}{\Box_{-1}} \sum_{j=1}^{-1} (\Box_{-j} X)^2$ . 在  $H_0$ 成立的条件下, T 与样本函数

$$\Box = \frac{X - \mu}{\Box / \Box}$$

都服从 t(n-1)分布,

这里我们采取双边检验. 由检验水平 α, 选择

$$\square_{\square} = \{ (-\infty, \square_{1}) \cup (\square_{2}, + \infty) \}$$

且使得

$$\square\{\sqsubseteq (-\infty, \sqsubseteq_1)\} = P\{t \in (\sqsubseteq_2, +\infty)\} = \alpha/2,$$

即使得

$$\square\{\square\in\square_{\square}\} = \alpha.$$











### 2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

可见  $\{t \in R_{\alpha}\}$  是一个小概率事件. 由 t 分布的对称性, 可知  $\lambda_2 = -\lambda_1 \triangleq \lambda$ . 考虑到 t 分布临界值表的构造(前面已介绍), 可由  $t_{\alpha/2}$  (n-1) 查出  $\lambda$  之值.

例 3 中的  $\alpha$  =0. 05, n=5, 由  $t_{0.025}$ (4) 查 t 分布临界值表, 查得  $\lambda$  =2. 776, 故否定域为

$$\square_{\square} = ((-\infty, -2.776) \cup (2.776, +\infty)).$$







# (<del>-</del>)

### 单个正态总体均值的假设检验

2. 总体方差 σ²未知时, 总体均值 μ 的假设检验 由样本值 x<sub>1</sub>, x<sub>2</sub>, ···, x<sub>n</sub>, 计算

$$\bar{x} = \frac{1}{5} (1250 + \cdots + 1275) = 1259,$$

$$\bar{x}^2 = \frac{1}{4} [(1250 - 1259)^2 + \cdots + (1275 - 1259)^2] 有 \bar{x}$$

$$= 570 \times \frac{1}{4} = 142.5,$$

$$= \frac{1259 - 1277}{\sqrt{4}42.5/5} \approx -3.37.$$

于是我们可以做出判断: 若□∈Rα,则否定 H₀, 否则认为 H₀相容. 本例中□≈-3. 37<-2. 776, 即□∈Rα, 故结论为否定 H₀: μ =1277. 换句话说, 该仪器间接测量温度有系统偏差.



2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

#### (2)右侧检验:

提出零假设  $H_0$ :  $\mu \leq \mu$  0, 备择假设  $H_1$ :  $\mu > \mu$  0.

给定显著性水平α,查t分布表(附表4)得临界值tα

(n-1),有

 $P(T>t_{\alpha}(n-1)) \leq \alpha$ .

由样本计算统计量  $T_1$  当  $T>t_{\infty}(n-1)$  时,拒绝零假设  $H_0$  否则不能拒绝零假设  $H_0$ .



#### 2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

例 4 在例 3 中, 我们进一步问此仪器间接测量的温度是否偏低( $\alpha = 0$ . 05)?

解 用 X 表示由这个仪器测得的数值, 有  $X^{2}N(\mu, \sigma^{2})$ , 其中  $\sigma^{2}$ 未知, 这是一个未知方差, 检验均值的问题. 提出零假设  $H_{0}$ :  $\mu \leq 1277$ . 这里我们仍选取 T 统计量

$$\Box = \frac{X-1277}{\Box / \Box \overline{\Box}}.$$

在  $H_0$ :  $\mu \leq 1277$  成立的条件下, 有不等式

$$\frac{X-1277}{\boxed{}} \leq \frac{X-\mu}{\boxed{}},$$

# (<del>一</del>)

## 单个正态总体均值的假设检验

2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

因此, T 与随机变量 
$$t=\frac{X-\mu}{\square/\sqrt{\square}}$$
有如下的关系  $\square \leq \square \square \square \square \square \square \square$ 

这里我们采取单边检验, 由检验水平  $\alpha$  , 选择 R  $\alpha = (\lambda_1 + \infty)$  , 使得

$$\square\{\square>\square\}=\square,$$

根据 t 分布数值表的构造, 由 t α(n-1)查得 λ, 于是







由

# (<del>-</del>)

## 单个正态总体均值的假设检验

2. 总体方差 σ²未知时, 总体均值 μ 的假设检验

上式说明事件  $\frac{X-1277}{\Box/\sqrt{2a}} > \lambda$  是概率比  $\alpha$  更小的小概率事件.

例中  $\alpha$  =0. 05, n=5, 由  $t_{0.05}(4)$  查 t 分布临界值表, 得到  $\lambda$  =2. 132, 故否定域为

$$\square_{\square} = (2.132, + \infty).$$

由样本值算出

$$\bar{x} = 1259$$
,  $\Box^2 = 142.5$ ,  $\Box = -3.37$ .

由于 □=-3. 37<2. 132, 即 □ □ 申R a, 故结论为 H₀: μ ≤ 1277 相容. 换句话说. 此仪器间接测量温度偏低.







- 2. 总体方差 σ²未知时, 总体均值 μ 的假设检验
- (3) 左侧检验:提出零假设 H<sub>0</sub>: μ ≥ μ ₀, 备择假设 H<sub>1</sub>: μ < μ ₀.

类似右侧检验, 当统计量 T<-t (n-1) 时, 拒绝零假设 H₀; 否则不能拒绝零假设 H₀.





#### (1) 双侧检验:

- ①提出零假设  $H_0: \sigma^2 = \square^2$ , 备择假设  $H_1: \sigma^2 \neq \square^2$  ( $\square^2$ 已知)
- 2统计量

$$\Box^2 = \frac{1}{\Box_0^2} \sum_{i=1}^{\Box} \left( \Box_{\Box} - X \right)^2 \cap \Box^2 (n-1).$$

- ③对于给定的显著性水平  $\alpha$  , 查  $x^2$  分布表 (附表 3) 得临界值  $\Box_{/2}^2$  (n-1) 和  $\Box_{1-\square/2}^2$  (n-1) , 有  $P(x^2 \ge \Box_{/2}^2 (n-1)) = \alpha$  /2 和  $P(x^2 \le \Box_{-\square/2}^2 (n-1)) = \alpha$  /2.
- 4 用样本值计算统计量 x², 当 x²>□²/₂ (n-1)或 x²
   ²<□²/₂ (n-1)时拒绝零假设 H₀; 否则不能拒绝 H₀.</li>





## 单个正态总体方差的假设检验

例 5 已知幼儿的身高在正常情况下服从正态分布 现从某一幼儿园5岁至6岁的幼儿中随机地抽查了9人. 其高度(单位:cm)分别为

115, 120, 131, 115, 109, 115, 115, 105, 110. 问 5 岁至 6 岁 的幼儿身高总体的方差是否为  $49(\alpha = 0.05)$ ?

解 用 X 表示幼儿身高, 有  $X^{\sim}N(\mu, \sigma^2)$ , 其中  $\mu$  未 知. 这是一个未知均值检验方差的问题.

- ①这个问题的零假设是 H0: □ 2=49.
- ②我们选取统计量

$$\Box = \frac{(\Box -1)\Box^2}{49}.$$









## 二)单个正态总体方差的假设检验

③由 
$$\alpha$$
 =0. 05, n=9,  $\lambda_1 = \Box_{1-\square/2}^2$  (8) 和  $\lambda_2 = \Box_{\square/2}^2$  (8), 查

$$x^2$$
分布临界值表得到  $\lambda_1$ =2. 18,  $\lambda_2$ =17. 5. 故否定域为  $\Box_{\Box} = \{(0, 2, 18) \cup (17, 5, + \infty)\}.$ 

4再由样本值算出

$$\bar{x} = 115$$
,  $\Box^2 = 55.25$ ,  $\Box \approx 9.02$ .

由于 2.  $18 < \square = 9$ . 02 < 17. 5, 即  $\square \notin R_a$ , 故结论为  $H_a$ 相容. 这就是说, 没有发现身高的总体方差不等于 49.



### 单个正态总体方差的假设检验

#### (2)右侧检验:

- ①提出零假设 H₀: σ²≤□², 备择假设 H₀: σ²>□².
- 2统计量

$$\Box^2 = \frac{1}{\Box_0^2} \sum_{i=1}^{\Box} \left( \Box_{\Box} - X \right)^2 \cap \Box^2 (n-1).$$

- ③对于给定的显著性水平  $\alpha$  , 查  $x^2$  分布表 (附表 3) 得临界值  $\Box$  (n-1), 有 P( $x^2 \ge \Box$  (n-1)) =  $\alpha$  .
- ④计算统计量 x², 当 x²>□²(n-1) 时, 拒绝零假设 H₀; 否则不能拒绝 H₀.



例 6 问例 5 中, 5 岁至 6 岁幼儿身高的总体方差是否小于等于  $49(\alpha = 0.05)$ ?

解 用 X 表示幼儿身高, 有  $X^{\sim}N(\mu, \sigma^2)$ , 其中  $\mu$  未知, 这是一个未知均值, 检验方差的问题.

- ①这个问题的零假设是  $H_0$ :  $\sigma^2 \leq 49$ .
- ②我们仍选取统计量  $\Box = \frac{(\Box 1)\Box^2}{49}$ .
- ③根据  $\alpha$  =0. 05, n=9, 由  $\lambda = \square_{0.05}^2$  (8) 查  $\times$  2分布临界值表得  $\lambda$  =15. 5, 故否定域为  $\square_{\square} = \{15.5, +\infty\}$ .
- ④由样本值算出x = 115, □ = 55.25, □ = 9.02. 由于□=9.02<15.5, 即□  $\oplus R_\alpha$ , 故结论为  $H_0$ 相容. 这就是说 没有发现身高的总体方差大于 49.



例 6 问例 5 中, 5 岁至 6 岁幼儿身高的总体方差是否小于等于  $49(\alpha = 0.05)$ ?

解 用 X 表示幼儿身高, 有  $X^{\sim}N(\mu, \sigma^2)$ , 其中  $\mu$  未知, 这是一个未知均值, 检验方差的问题.

- ①这个问题的零假设是  $H_0$ :  $\sigma^2 \leq 49$ .
- ②我们仍选取统计量  $\Box = \frac{(\Box 1)\Box^2}{49}$ .
- ③根据  $\alpha$  =0. 05, n=9, 由  $\lambda = \square_{0.05}^2$  (8) 查  $\times$  2分布临界值表得  $\lambda$  =15. 5, 故否定域为  $\square_{\square} = \{15.5, +\infty\}$ .
- ④由样本值算出x = 115, □ = 55.25, □ = 9.02. 由于□=9.02<15.5, 即□  $\oplus R_\alpha$ , 故结论为  $H_0$ 相容. 这就是说 没有发现身高的总体方差大于 49.





### 单个正态总体方差的假设检验

#### (3)右侧检验:

- ①提出零假设 H₀: σ²≤□², 备择假设 H₀: σ²>□².
- 2统计量

$$\Box^2 = \frac{1}{\Box_0^2} \sum_{i=1}^{\Box} \left( \Box_{\Box} - X \right)^2 \cap \Box^2 (n-1).$$

- ③对于给定的显著性水平  $\alpha$  , 查  $x^2$  分布表 (附表 3) 得临界值  $\Box$  (n-1), 有 P( $x^2 \leq \Box$  (n-1)) =  $\alpha$  .
- ④计算统计量 x², 当 x <□²(n-1) 时, 拒绝零假设 H₀; 否则不能拒绝 H₀.

7.3 两个正态总体参数的假设检验

- (一) 两个正态总体均值的假设检验
- (二) 两个正态总体方差的假设检验









设X~N( $\mu_1$ ,),Y~N( $\mu_2$ ,),X<sub>1</sub>,X<sub>2</sub>,...,X<sub>m</sub>为X的样本,Y<sub>1</sub>,Y<sub>2</sub>,...,Y<sub>n</sub>为Y的样本,X<sub>1</sub>,X<sub>2</sub>,...,X<sub>m</sub>;Y<sub>1</sub>,Y<sub>2</sub>,...,Y<sub>n</sub>相互独立.



## 1. 母, 母已知时均值的检验

### (1) 双侧检验:

- ①提出零假设 H<sub>0</sub>: μ 1= μ 2, 备择假设 H<sub>1</sub>: μ 1≠ μ 2.
- 2统计量

$$\Box = \frac{X - \overline{\Box}}{\overline{\Box_{1}^{2} + \overline{\Box_{2}^{2}}}} N(0, 1).$$

- ③对于给定的显著性水平 a, 查标准正态分布表(附表
- 2) 得临界值 u<sub>α/2</sub>, 满足 P(|U|>u<sub>α/2</sub>)=α.
- ④计算统计量 U, 当 | U | >u ₄ /2 时, 拒绝 H₀; 当 | U | ≤u ₄ /2 时, 接受 H₀.









- 1. 🗗, 🕏 已知时均值的检验
- (2)右侧检验:
- ①提出零假设 H₀: μ₁≤μ₂, 备择假设 H₁: μ₁>μ₂.
- ②统计量  $\Box = \frac{\overline{X-\Box}}{\Box \overline{\Box_1^2} + \overline{\Box_2^2}} ^{\sim} N(0,1).$
- ③对于给定的显著性水平 a, 查标准正态分布表(附表
- 2) 得临界值 u<sub>α/2</sub>, 满足 P(U >u<sub>α/2</sub>) = α.
- ④计算统计量 U, 当 U >u □/2 时, 拒绝 H₀; 当 | U | ≤ u □/2 时, 接受 H₀.







## 1. 🗗, 🖟 已知时均值的检验

例 1 从甲、乙两厂所生产的钢丝总体 X, Y(它们均服从正态分布中各取 50 束做拉力强度试验, 得x=1208mPa, y=1284mPa. 已知  $\alpha$  x=80mPa,  $\alpha$  y=94mPa. 问: 甲、乙两厂钢丝的抗拉强度是否有显著差异( $\alpha$  =0.05)?

解 ①检验零假设 H₀: μ₁=μ₂, 备择假设 H₁: μ₁≠μ₂. ②计算统计量

$$|\Box| = \frac{|X - \overline{\Box}|}{\Box \frac{\overline{\Box}^2}{\Box} + \frac{\Box^2}{\Box}} = \frac{|1208 - 1284|}{\Box \frac{80^2}{50} + \frac{94^2}{50}} \approx 4.35.$$

③对于给定的显著性水平  $\alpha$  =0. 05, 查标准正态分布表 (附表 2) 求得临界值  $u_{\alpha/2}$ =1. 96, ④因为统计量 |U|=4. 35>1. 96, 所以拒绝  $H_0$  即认为甲、乙两厂钢丝的抗拉强度有显著差异.







2. 『二』未知时均值的检验

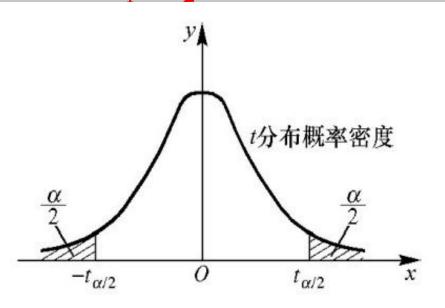
#### (1) 双侧检验:

①提出零假设 H<sub>0</sub>: μ <sub>1</sub>= μ <sub>2</sub>, 备择假设 H<sub>1</sub>: μ <sub>1</sub>≠ μ <sub>2</sub>.

- ③对于给定的显著性水平  $\alpha$  , 查 t 分布表(附表 4)得临界值  $t_{\alpha/2}$ , 满足  $P(|T|>t_{\alpha/2}(m+n-2))=\alpha$  (见图 7—3).
- ④ 计算统计量 T 的值, 当 | T | >t ₄ /₂ (m+n-2) 时, 拒绝 H₀; 当 | T | ≤t ₄ /₂ (m+n-2) 时, 不能拒绝 H₀.

# (一) 两个正态总体均值的假设检验

2. 『二』未知时均值的检验



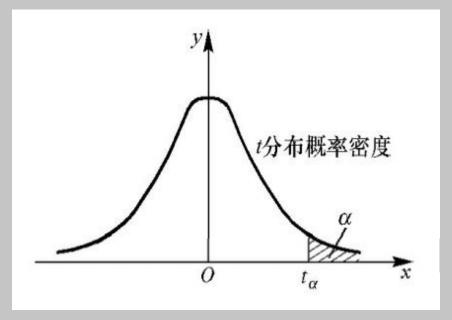


图7一3双侧检验

图7一4右侧检验







2. 『二』未知时均值的检验

#### (1)右侧检验:

①提出假设  $H_0$ :  $\mu_1 \leq \mu_2$ , 备择假设  $H_1$ :  $\mu_1 \neq \mu_2$ .

②统计量
$$\Box = \frac{X-\overline{\Box}}{\overline{\Box}+\frac{1}{\Box}}$$
~t (m + n-2).

- ③对于给定的显著性水平  $\alpha$  , 查 t 分布表(附表 4)得临界值  $t_{\alpha/2}$ , 满足 P(T > $t_{\alpha/2}$ (m+n-2))= $\alpha$ (见图 7—4).
- ④ 计算统计量 T 的值, 当 T >t ₄ /₂ (m+n-2) 时, 拒绝 H₀; 当 T ≤t ₄ /₂ (m+n-2) 时, 不能拒绝 H₀.







# (一) 两个正态总体均值的假设检验

例 2 在一台自动车床上加工直径为 2.050 毫米的轴, 现在相隔 2 小时, 各取容量都为 10 的样本, 所得数据如下表所示, 问这台车床的生产是否稳定( $\alpha$  =0.01)?

| -1-7         |       |     |        |        |        |        |        |        |        |        |        |
|--------------|-------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 零件编号         | 1     |     | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
| 样<br>本<br>I  | 2. 06 | 6 2 | 2. 063 | 2. 068 | 2. 060 | 2. 067 | 2. 063 | 2. 059 | 2. 062 | 2. 062 | 2. 060 |
| 样<br>本<br>II | 2. 06 | 3 2 | 2. 060 | 2. 057 | 2. 056 | 2. 059 | 2. 058 | 2. 062 | 2. 059 | 2. 059 | 2. 057 |







解 假设轴直径的分布是正态的, 由于样本是取自同一台车床, 可认为 $\Box^2 = \overline{\Box}^2 = \sigma^2$ , 而  $\sigma^2$ 是未知常数. 又 m=n=10, 由样本计算得

$$\bar{X} = 2.063, \quad \bar{\Box} = 2.059, \quad \bar{\Box}^2 \approx 0.00000956,$$
 $\bar{\Box}^2 \approx 0.00000489. \quad \bar{\Box} = 0.002688,$ 

- ①检验零假设 H<sub>0</sub>: μ ₁= μ ₂, 备择假设 H<sub>1</sub>: μ ₁≠ μ ₂.
- ②由已知数据计算出

$$|T| = \frac{\overline{X-\Box}}{\overline{1}} = \frac{\overline{2.063-2.059}}{0.002688 \times \Box \overline{\frac{1}{10} + \frac{1}{10}}} \approx 3.327.$$

- ③ 给定显著性水平 α =0.01, 查 t 分布表得临界值 t<sub>0.01/2</sub>(10+10-2)=t<sub>0.005</sub>(18)=2.88.
- ④因为统计量 | T | =3. 327>2. 88, 所以拒绝零假设 H₀, 即认为这台机床受时间的影响而生产不稳定.

中国人民大学出版社

#### 1. μ1, μ2已知时, 正态总体方差的假设检验

#### (1) 双侧检验:

①提出零假设  $H_0: \square^2 = \square^2$ , 备择假设  $H_1: \square^2 \neq \square^2$ .

②统计量 
$$\Box = \frac{\Box \sum_{|||} (\Box_{|||})^2}{\Box \sum_{||||} (\Box_{||}|_2)^2} \, F(m, n).$$

- ③给定显著性水平 α, 查 F 分布表(附表 5)得临界值 F<sub>α/2</sub>,满足 P(F>F<sub>α/2</sub>(m, n))=α/2, P(F<F<sub>1-α/2</sub>(m, n))=α/2, 如图 7─5 所示.
- ④ 计算统计量 F, 当 F<sub>1-α/2</sub> (m, n) ≤ F ≤ F<sub>α/2</sub> (m, n) 时, 不能拒绝 H₀; 否则拒绝 H₀.

注: 其中 F a /2 (m, n) 可直接查 F 分布表, 由于

$$\square_{1-\square/2}(m,n)=\frac{1}{\square_{1/2}(n,m)},$$

可通过查 F<sub>α/2</sub> (n, m) 算得 F<sub>1-α/2</sub> (m, n) 中国人民大学出版社









1. μ1, μ2已知时, 正态总体方差的假设检验

#### (1)右侧检验:

①提出零假设  $H_0: \Box^2 \leq \Box^2$ , 备择假设  $H_1: \Box^2 > \Box^2$ .

②统计量
$$\Box = \frac{\Box \sum_{|||} (\Box_{||} \Box_{1})^{2}}{\Box \sum_{||||} (\Box_{||} \Box_{2})^{2}} F(m, n).$$

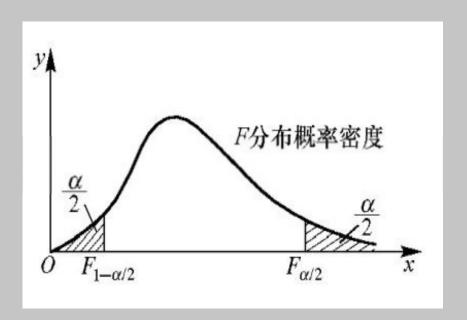
- ③给定显著性水平 α, 查 F 分布表(附表 5)得临界值 F α, 满足 P(F>F α (m, n)) = α (见图 7—6).
- 4) 计算统计量 F, 当 F>F (m, n) 时, 拒绝 Ho; 否则不能拒绝 Ho.







1. μ1, μ2已知时, 正态总体方差的假设检验



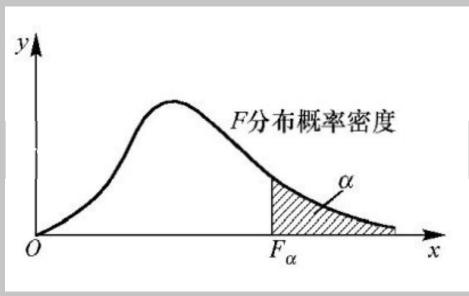


图7一5双侧检验

图7一6右侧检验







2. μ1,μ2未知时,正态总体方差的假设检验

#### (1) 双侧检验:

- ①提出零假设  $H_0: \square^2 = \square^2$ , 备择假设  $H_1: \square^2 \neq \square^2$ .
- ②统计量 $\Box = \frac{\Box^2}{\Box^2} \, F(m-1, n-1)$ .
- ③给定显著性水平α,查F分布表(附表 5)得临界值 F<sub>α</sub>/<sub>2</sub>, F<sub>1-α/2</sub>, 满足 P(F>F<sub>α/2</sub>(m-1, n-1))=α/2, P(F<F<sub>1-α/2</sub>(m-1, n-1))=α/2.
- ④ 计算统计量 F, 当 F<sub>1-α/2</sub> (m-1, n-1) ≤ F ≤ F<sub>α/2</sub> (m-1, n-1) 时, 接受 H₀; 否则不能拒绝 H₀.

2. μ1,μ2未知时,正态总体方差的假设检验

#### (2)右侧检验:

- ①提出零假设  $H_0: \square^2 \leq \square^2$ , 备择假设  $H_1: \square^2 > \square^2$ .
- ②统计量□= □² ~F(m-1, n-1).
- ③给定显著性水平 α, 查 F 分布表(附表 5)得临界值 F<sub>α</sub>, 满足 P(F>F<sub>α</sub>(m-1, n-1))= α.
- ④ 计算统计量 F, 当 F>F (m-1, n-1) 时, 拒绝 H₀; 否则不能拒绝 H₀.

2. μ1,μ2未知时,正态总体方差的假设检验

例 3 在例 2 中我们假定两个总体的方差  $\Box^2 = \Box^2$ ,它们是真的相等吗?我们来检验一下( $\alpha = 0$ . 1).

解 ①检验零假设  $H_0: \square^2 = \square^2$ , 备择假设  $H_1: \square^2 \neq \square^2$ .

已知 m=n=10,  $\Rightarrow$ 0. 00000956,  $\Rightarrow$ 0. 00000489.

②计算统计量
$$\Box = \frac{\Box_1^2}{\Box_2^2} = \frac{0.00000956}{0.00000489} \approx 1.96.$$

③给定显著性水平α=0.1,查 F 分布表(附表 5)得临界值

$$\Box_{0.05}(9,9) = 3.18, \quad \Box_{0.95}(9,9) = \frac{1}{\Box_{0.05}(9,9)} = \frac{1}{3.18} \approx 0.31.$$

④因为 0.31≤F=1.96≤3.18, 所以不能拒绝零假设  $H_0$ , 即认为两个总体的方差无明显差异.





7.4 非正态总体参数的假设检验



(二) 非正态总体均值的大样本检验









#### (1)双侧检验

- 例 1 某种产品的废品率是 5%. 现从生产出的一批产品中随意抽取 50 个, 检验得知有 4 个废品, 问能否认为这批废品率为 5%( $\alpha$  =0. 05).
- ①这个假设检验需要检验的假设是:

$$\Box_0$$
: p = 0.05,  $\Box_1$ : p \neq 0.05.

这是属于概率 p 的假设检验. 这一问题的一般数学模型如下.

设总体 X 服从两点分布:

| X              | 1 | 0 |
|----------------|---|---|
| p <sub>i</sub> | р | q |

(p+q=1, 0<p<1), 作下列假设检验:

$$\Box_0$$
:  $p = \Box_0$ ,  $\Box_1$ :  $p \neq \Box_0$ .







# (<del>-</del>)

## 概率p的假设检验

②从这一总体取样本  $X_1, X_2, \dots, X_n$  (n 充分大). $\mathbf{X} = \frac{1}{\square} \sum_{l=1}^{\square} X_l = \frac{1}{\square}$ 即事件发生

的频率,在例1中即为废品率.当假设Ho成立时,

$$\Box \stackrel{-}{\otimes} = \Box_0, \quad \stackrel{-}{\mathrm{D}} \stackrel{-}{\otimes} = \frac{\Box_0 \Box_0}{\Box}$$

(qo=1-po).由棣莫弗-拉普拉斯中心极限定理,

$$\Box = \frac{\Box - \Box_0}{\Box \Box_0 \Box_0} \sim \Box (0,1).$$

③上述假设检验为双侧检验.对显著水平 α,拒绝域 W 取为

$$\Box = \{ |\Box| > \Box_{\overline{2}} \}.$$

# (<del>-</del>)

#### 概率p的假设检验

④这样,由样本值  $x_1,x_2,\dots,x_n$  得知事件发生的频率为  $\frac{1}{2}$  ,算得 u 值.当  $\frac{1}{2}$   $\frac{1}{$ 

拒绝 Ho,即可以认为事件发生的概率是 po.

在例 1 中,  $\frac{\square}{\square} = \frac{4}{50} = 0.08$ ,  $p_0 = 0.05$ ,  $q_0 = 0.95$ ,

$$\Box = \frac{0.08 - 0.05}{\Box \frac{0.05 \times 0.95}{50}} \approx 0.973.$$

当 年0.05 时,□=1.96,因为

$$|\Box| = 0.973 < \Box_{\overline{2}} = 1.96,$$

所以不能拒绝 Ho,即可以认为该批产品的废品率为 5%.



#### (1)双侧检验

- ①作下列假设检验:  $\square_0$ :  $p = \square_0$ ,  $\square_1$ :  $p \neq \square_0$ .
- ②从这一总体取样本 X<sub>1</sub>,X<sub>2</sub>,…,X<sub>n</sub>(n 充分大)由棣莫弗-拉普拉斯中心 极限定理,

$$\Box = \frac{\Box - \Box_0}{\Box \overline{\Box_0 \Box_0}} \sim \Box (0,1).$$

- ③对显著水平 α,拒绝域 W 取为□ = {□|>□₂}.
- ④这样,由样本值  $x_1,x_2,\dots,x_n$  得知事件发生的频率为 $\frac{\square}{\square}$ ,算得 u 值.当  $|u| > \frac{\square}{2}$ 时,拒绝  $H_0$ ,即不能认为事件发生的概率为  $p_0$ ;当  $|u| < \frac{\square}{2}$ 时,不能拒绝  $H_0$ ,即可以认为事件发生的概率是  $p_0$ .









#### (2)右侧检验

例 2 设某厂生产的产品每批数量很大,出厂标准是废品率不超过 0.02,现从一批产品中随机抽取 400 个,经检测,发现有 12 个不合格. 问是否应该让这批产品出厂(⊂0.05)?

设 p 为这批产品的废品率,问题归结为假设检验:

$$\Box_0 : p \leq 0.02, \quad \Box_1 : p > 0.02.$$

例 3 某青工以往的记录是:平均每加工 100 个零件,有 60 件是一等品.今年考核他,在他加工的零件中随机抽取 100 件,发现有 70 件是一等品.这个成绩是否证明该青工技术有了提高(Œ0.05)?

这一问题的 po=0.6,假设检验问题为:

$$\Box_0: p \le 0.6, \quad \Box_1: p > 0.6.$$





#### (2)右侧检验

- ①提出假设 $\square_0: p \leq \square_0, \quad \square_1: p > \square_0.$
- ③对显著水平 α,拒绝域 W 取为:

$$\square = \{\square > \square_{\square}\}.$$



- (3)左侧检验
- ①提出假设 $\square_0: p \ge \square_0, \square_1: p < \square_0.$

- ③对显著水平 α,拒绝域 W 取为:□ = {□< -□¬}.
- ④由样本值  $x_1,x_2,\dots,x_n$  得知事件发生的概率为 $\frac{\square}{\square}$ ,算得 u 值,当  $u < \neg u$  。时,拒绝  $H_0$ ,即认为概率  $p < p_0$ ;当  $u \ge u$  。时,不能拒绝  $H_0$ ,即不能认为  $p < p_0$ .

# (<del>-</del>)

#### 概率p的假设检验

例 4 根据以往长期统计, 某种产品的废品率不小于 5%. 但技术革新后, 从此种产品中随机抽取 500 件, 发现有 15 件废品. 问能否认为此种产品的废品率降低了(α=0.05)?

解 ①假设检验问题为:  $\Box_0$ :  $p \geq 0.05$ ,  $\Box_1$ : p < 0.05,

②废品率为
$$\frac{15}{500}$$
=0.03,  $\Box = \frac{0.03-0.05}{\Box \frac{\overline{0.05\times0.95}}{500}} \approx -2.052$ ,

③当 α =0.05 时, u₂=1.645. 因为

$$\Box = -2.052 < -\Box_{\Box} = -1.645$$
,

4所以拒绝 H。, 即认为废品率已降至 5%以下.









#### 非正态总体均值的大样本检验

设总体 X 的分布函数为 F(x),  $X_1$ ,  $X_2$ , …,  $X_n$ 是来自总体 X 的大样本  $(n \ge 50)$ , 根据中心极限定理, 设  $E(X) = \mu$ ,  $D(X) = \sigma^2$ , X为样本均值, 则当 n 充分大时,

以它作为理论基础,可以对非正态总体的均值作假设检验.

# (二) 非

## 非正态总体均值的大样本检验

#### 假设检验的类型为:

- (1)  $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0;$
- (2)  $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0;$
- (3)  $H_0: \mu \geqslant \mu_0, H_1: \mu < \mu_0.$

这三种情形皆用检验统计量

$$\Box = \frac{(X - \Box_0)}{\Box}.$$

当  $\sigma^2$  未知时, 以样本标准差  $S=\Box \frac{1}{\Box \Box} \sum_{i=1}^{\Box} (\Box_{i} \overline{X})^2$  代替总体

标准差 σ , 得 (X-□<sub>0</sub>) (□ , 仍记为 u. 当 n 充分大时, 仍有 · u ~ N(0, 1).









## 非正态总体均值的大样本检验

#### 检验法如下:

- (1) 取拒绝域 W= {|u|>□₂}. 由样本值 x₁, x₂, ⋯, xո, 算得 u 值 若|u|>□₂, 则拒绝 H₀; 若|u|≤□₂, 则不能拒绝 H₀.
- (2) 取拒绝域 W= {u>u α}. 由样本值 x₁, x₂, ⋯, xո, 算得 u 值. 若 u>u α, 则拒绝 H₀; 若 u≤u α, 则不能拒绝 H₀.
- (3) 取拒绝域 W= {u<-u α}. 由样本值 x₁, x₂, ···, xո, 算得 u 值, 若 u<-u α,则拒绝 H0; 若 u≥-u α,则不能拒绝 H0.

本节讨论的非正态总体均值的大样本检验用到的样本函

数是 u, 所以此种检验称为 u 检验.





### 非正态总体均值的大样本检验

例 5 某城市每天因交通事故死亡人数服从泊松分布, 根据长期 统计资料, 死亡人数均值为3人, 近一年来, 采用交通管理措施, 据 300 天的统计, 每天平均死亡人数为 2.7 人. 问能否认为每天平均 死亡人数显著减少(α=0.05)?

解 设每天死亡人数为 X~P(λ), 所以

$$\square(\square) = 3, \quad \square(\square) = 3.$$

- ①假设检验问题为 $\square_0: \lambda \geq \square_0 = 3, \square_0: \lambda < \square_0 = 3.$
- ②检验统计量 $\Box = \frac{(X-\Box_0)}{\Box}$  $\sqrt{\overline{a}} = \frac{(2.7-3)}{\overline{a}}$  $\sqrt{\overline{a}}00 = -3$ ,
- ③当 α =0. 05 时, u<sub>α</sub>=1. 645.
- ④因为 □= -3 < -□□ = -1.645,

所以拒绝 H。即可认为每天平均死亡人数已显著减少.







7.5

# 总体分布的假设检验

- (一) 皮尔逊(Pearson)的 x <sup>2</sup>检验
- (二) 总体分布假设的 x 2检验法









#### 医尔逊(Pearson)的 x 2检验

皮尔逊定理 当  $n \rightarrow \infty$ ,  $x^2$  的极限分布是自由度为

r-1 的 x <sup>2</sup>分布. 即 x <sup>2~</sup> x <sup>2</sup> (r-1).

## 皮尔逊的 x 2 检验法:

- ①提出假设  $\square_0: P\{X = \square\} = \square_1$  (i = 1, 2, ···, r).
- ②统计量 x 2~ x 2(r-1).
- ③对显著性水平α. 计算 x²值
- ④当 x ²>□²(r-1)时, 拒绝 H₀; 当 x ²≤□²(r-1)时, 不能拒 绝 Ho.





# (<del>一</del>)

### 皮尔逊(Pearson)的 x 2检验

法 例 1 蒲丰(Buffon)曾将一枚硬币掷了 n=4040 次, 正面发生 m=2048 次. 问能否认为"出现正面的概率是 $\frac{1}{2}$ "( $\alpha$  =0. 05)?解 设随机变量

- ①原假设 H<sub>o</sub>: P {X=1} =  $\frac{1}{2}$ , P {X=0} =  $\frac{1}{2}$ .
- ②由 n=4040, m=2048, 有口 =  $\frac{\Box \frac{\Box}{2}\Box^2}{\Box/4} \approx 0.776$ .
- ③当  $\alpha$  =0. 05,  $\square_{0.05}^2$  (1) =3. 841. 因为  $\square^2 = 0.776 < \square_{0.05}^2$  (1) = 3. 841,
- 4 所以不能拒绝  $H_0$ , 即可认为掷出正面的概率是 $\frac{1}{2}$ .









## 皮尔逊(Pearson)的 x 2检验

法 例 2 掷一枚骰子 120 次, 得点数的频数分布如下:

| 点数 | 1  | 2  | 3  | 4  | 5  | 6  |
|----|----|----|----|----|----|----|
| 频数 | 21 | 28 | 19 | 24 | 16 | 12 |

根据试验结果检验这枚骰子六个面是否匀称( $\alpha = 0.05$ ).

解①设掷出点数为 X, 要检验: 
$$\square_0$$
:  $P\{X=i\} = \frac{1}{6}$  ( $i=1,2,3,4,5,6$ ),

$$\Box^{2} = \frac{\Box 21 - \frac{120}{6}\Box^{2}}{\frac{120}{6}} + \frac{\Box 28 - \frac{120}{6}\Box^{2}}{\frac{120}{6}} + \frac{\Box 9 - \frac{120}{6}\Box^{2}}{\frac{120}{6}} + \frac{\Box 24 - \frac{120}{6}\Box^{2}}{\frac{120}{6}} + \frac{\Box 120 - \frac{120}{6}\Box^{2}}{\frac{120}{6}} + \frac{\Box 120 - \frac{120}{6}\Box^{2}}{\frac{120}{6}} = 8.1.$$

③当 
$$\alpha$$
 =0. 05,  $\Box_{0.05}^2$  (5) =11. 07. ④因为  $\Box_{0.05}^2$  = 8. 1 <  $\Box_{0.05}^2$  (5) = 11. 07, 所以不能拒绝 H<sub>0</sub>, 即可认为骰子的六个面是匀称的.







总体 X 的分布函数为 F(x).

①作下列假设检验:  $\square_0$ :  $F(x) = \square_0(x)$ , 其中  $F_0(x)$  是一分布函数. 利用皮尔逊  $x^2$  检验法对上述假设检验作一近似处理.

将实轴分为 r 个区间, 分点满足

$$-\infty = \square_0 < \square_1 < \square_2 < \cdots < \square_{-1} < \square_+ \infty$$
, 得r个区间:

$$(\square_0,\square_1], (\square_1,\square_2], \cdots, (\square_{-2},\square_{-1}], (\square_{-1},\square_0).$$





$$\Box(\Box) = \Box_0(\Box) - \Box_0(\Box_{-1}) \quad (i = 2, 3, \dots, r-1),$$

$$\Box(\Box_1) = \Box_0(\Box_1) \quad (\Box\Box_0 = -\infty),$$

$$\Box(\Box_{\Box}) = 1 - \Box_{0} (\Box_{\Box + 1}) \quad (因 \Box_{\Box} = + \infty).$$

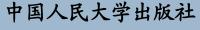
记 P(A<sub>i</sub>)=p<sub>i</sub>(i=1, 2, ···, r). 这样. 原来的假

### 设检验问题化为:

$$\square_0': \square(\square) = \square$$
  $(i = 1, 2, \dots, r)$ .







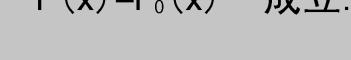


②设总体 X 的样本值为 x<sub>1</sub>, x<sub>2</sub>, ···, x<sub>n</sub>, 它落入 A<sub>i</sub> 的 频数为 m<sub>i</sub>(i=1, 2, ···, r), 理论频数为

$$np_i$$
 (i=1, 2, …, r), 计算 $\Box^2 = \sum_{i=1}^{\square} \frac{(\Box \Box n \Box )^2}{\Box \Box \Box}$ .

- ③当 n 充分大时, x <sup>2~</sup> x <sup>2</sup> (r-1). 对显著水平 α,
- ④当 x²>□²(r-1)时, 拒绝□₀, 即认为"F(x)=F₀(x)

不成立; 当  $x^2 \le \Box_0^2 (r-1)$  时, 不能拒绝  $\Box_0^r$ , 即认为 " $F(x)=F_0(x)$ "成立.











例3 某电话交换台,在100分钟内记录了每分钟被呼唤的次数x,设m为出现该x值的频数,整理后的结果如下:

| X | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7 | 8 | 9 |
|---|---|---|----|----|----|----|----|---|---|---|
| m | 0 | 7 | 12 | 18 | 17 | 20 | 13 | 6 | 3 | 4 |

问:总体 X(电话交换台每分钟呼唤次数) 服从泊松分布吗( $\alpha$  =0.05)?

解 假设检验问题为: □<sub>0</sub>: X P(λ).

因为 λ 是泊松分布的未知参数, λ 的极大似数估计为样本均值x:

$$\Box = x = (1 \times 7 + 2 \times 12 + \dots + 9 \times 4)/100 = 4.33.$$

算出理论概率:  $\Box = P\{X = i\} = \frac{\Box}{\Box}e^{-\Box}$  ( $i = 0, 1, 2, \cdots$ ), 进一步算出理论频数  $np_i$  ( $i = 0, 1, 2, \cdots$ ), 得下表:









| X= i           | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9 以上   |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| p <sub>i</sub> | 0. 013 | 0. 057 | 0. 123 | 0. 178 | 0. 193 | 0. 167 | 0. 121 | 0. 075 | 0. 040 | 0. 033 |
| npi            | 1. 3   | 5. 7   | 12. 3  | 17. 8  | 19. 3  | 16. 7  | 12. 1  | 7. 5   | 4. 0   | 3. 4   |
| m <sub>i</sub> | 0      | 7      | 12     | 18     | 17     | 20     | 13     | 6      | 3      | 4      |

由于 x=0、x=8 及  $x \ge 9$  组中  $np_1$  皆小于 5, 将它们与相邻组合并, 合并后组为 " $x \le 1$ ", "x=2", …, " $x \ge 8$ ", 共 8 组, 即 r=8. 合并的组中的理论频率, 实际频率由原来的组的相应的值分别相加.

如: " $x \ge 8$ "组的理论频数为 7. 4, 实际频数为 7. 计算  $x^2$ 值,

$$\Box^2 = \frac{(7-7.0)^2}{7} + \frac{(12-12.3)^2}{12.3} + \cdots + \frac{(6-7.5)^2}{7.5} + \frac{(7-7.4)^2}{7.4} = 1.324,$$

它近似于  $\times^2$  (8-1-1) =  $\times^2$  (6) 分布. 当  $\alpha$  =0. 05,  $\square_{0.05}^2$  (6) =12. 59.

因为
$$\Box^2 = 1.324 < \Box_{0.05}^2$$
 (6) = 12.59,

所以不能拒绝 Ho, 即可以认为 X 服从泊松分布.